A long time ago, when the idea of film was in its infancy, there was a great debate surrounding whether movies could be Art. The early movies, pioneered by inventors and not artists, were more technology demonstrations than organized stories. There was a period of time when the limitations of the medium had to catch up to the ambitions of the artists of the time, when perhaps there was reason to be suspicious of the capacity of movies to be anything meaningful. Even once the full capabilities of movies became apparent, once it was clear that the elements were in place for artistic narratives to be created, some argued that it could never harbor the intellectual depth necessary for art. A mirror of this debate survives today in regards to video games, where Roger Ebert (ironically enough) claims that whatever the visual or textual qualities of a video game, it cannot contain enough substance to constitute art.

Whatever lingering doubt may have remained, whatever ancient or ancestral fear of film-as-art still hangs on in the mustiest corners of the ever-contrarian ivory tower, ought now be extinguished. So, by all accounts, there is no more controversy about cinema, at least. But to the extent that anyone might try to make a cogent position against cinema on that battleground, there is at least one movie which, on its own, entirely refutes the opposition.

The Wind Rises (2013) is supposed to be Hayao Miyazaki’s last movie. Miyazaki is a decorated and beloved animator, responsible for a host of the great classics in animation and the inspiration for the current, cartoon-friendly climate that reigns.

The world is complicated, nearly unmeasurably so. Even the workings of the smallest bits of matter in the universe are incredibly complex, and so to make progress in understanding the world, we have to neglect some of this vast complexity. We must impose simplifications on our mental models of the world in order to make progress in comprehending the world.

Following the definition of William Wimsatt, these simplifications can be called heuristics. By his reckoning, not only are heuristics necessary, but the choice of particular heuristics guides the path of our gaining of knowledge.

Heuristics are necessary because human beings are finite. In the old Enlightenment-era schemes, the world could be perceived as Laplacian in nature, as a finite series of determinate computations. Now that we are aware of the true scope of the universe, the notion of a determinate universe, while perhaps theoretically interesting, lacks utility. Even if we were to possess perfect information, the scale of the universe would not yield to any accurate calculation.

These arguments apply just as well when scaled down to the level of realistic scientific inference. There are too many permutations of gene regulatory networks to model them as the interactions of molecules. Combinatorial explosions abound in dealing with genomes of even a few thousand genes. We must idealize them.

So we require simplifications, and a change in the framework of our thought. Absent a single, unifying conception of the universe, we are allowed a choice of heuristics. For example, one choice of heuristics for gene regulatory networks is to consider the network in the context of graph theory (like Davidson).

You end up with something that looks like this.

In addition to being (sometimes) visually appealing, this heuristic frames the problem in a space of mathematics which seems to apply well to gene regulation. That space is network theory. By considering regulatory interactions (Gene X activates Gene Y) as edges and genes as nodes, we can perhaps gain some useful knowledge by applying the well-understood axioms and practices of network theory to this new, empirical problem of gene regulation. This perspective is intriguing, and also simplifying: under the hood, regulatory interactions are not simple mathematical relationships, they are incredibly complex processes performed by elaborate molecular machinery. Perhaps, however, these incredibly complex machines perform their operations in ways that are similar enough to those simple mathematical relationships that we can, for a moment, neglect the considerable intricacy of those molecular machines.

Supposing that the network theory heuristic is an interesting and useful one, I now want to broaden the scope of this post to a larger, more significant question. If some heuristics are useful, and others aren’t, can we come up with a general theory for which heuristics apply in which situations?

I had this thought while re-reading William Wimsatt’s excellent tome on heuristics. He advocates for them, and for an escape from physics-style thinking (in terms of Lamarckian demons and absolute rule-sets). I agree on both scores, but the trouble with heuristics is that they are frighteningly* arbitrary.

For instance, I could choose to use one set of heuristics to simplify gene regulation, and you could choose a different set. Our two sets would differ in terms of their simplifying assumptions, and, if we advanced the study of each of them sufficiently far, they might produce different predictions about the behavior of some particular gene regulatory systems. How would we know which one was right?

This scenario is something of a false problem, because we could always do experiments to test the predictions of each, and then disregard (or assimilate) the one whose predictions turned out to be correct less often. Even so, as long as there were two seemingly correct systems of thinking about gene regulatory networks, there would be tension between them. And one could envision scenarios in which people proposed wildly inappropriate heuristics to tackle gene regulatory problem-agendas, producing false results but being unprovably wrong (for at least a short time).

In the long run, to avoid these kinds of problems, it would be desirable to have a guidebook of sorts which prescribed the kind of heuristics which are most likely to be useful in each situation. Wimsatt doesn’t provide that guidebook, although he seems to hint at its utility (and perhaps, its future existence).

The Book of Heuristics

In thinking about heuristics, I always tend to come back to the concept of statistical models which, under my reading of Wimsatt, are perfect examples of heuristics. A statistical model describes the way that two or more variables relate to each other. To work properly, it has to assume some structure between the two or more variables. When we then apply the model to actual data, we fit the data into the structure, and in so doing, perhaps learn something about the problem at hand.

For example, linear models assume that two variables are linear functions of each other, that is:

y = ax + b

That equation should be comfortable to the reader, as it’s a fairly straightforward relationship to have. Verbally, it means that for every one unit increase in x, y increases or decreases by some steady amount, a. When we fit a linear model to data, we take a series of y‘s and x‘s and, using some algorithms, impute the values of a and b. By applying this heuristic, we are able to learn something, we think, about the underlying link between x and y (e.g. each unit of x is worth a units of y).

Linear models work great in all sorts of places, but they also fail when applied to some datasets. If one were to attempt to model the amount of sunlight as a function of the hour of the day (with a 10-year dataset of each) using a linear model, one would get something like a flat line. Moreover, the fit of the data would be terrible. We know that there isn’t a linear relationship between these two variables, and so to assume that there is defies common sense and good statistical practice.

The answer to the question I posed earlier (could we build a guidebook for heuristics?) seems to hinge on whether we could identify, in advance, whether a certain heuristic would be likely to fail when applied to a given problem.

To a certain degree maybe that objective is possible, in that we can let intuition and the “eye test” guide us. If, for example, we were to plot hour of the day vs. amount of sunlight, it would be very plain that the dataset is not amenable to a linear fit, although there is clearly a pattern present. But this ‘eye test’ seems really just like mental model fitting.

I wonder if we couldn’t do better still, and without gathering the data beforehand. As a parting quandary, I pose the following question. Is it possible that, by leveraging our intuition about the architecture of a system, we could rule out certain heuristics as being likely to apply poorly to that system?

I think the answer is yes, and I think this kind of heuristic choice is exercised successfully all the time (albeit without a firm theoretical basis for its use). For example, imagine some highly complex system, in which different parts of the system are strongly interconnected. The system functions in such a fashion that changes to any single part ripple outwards in unpredictable ways, sometimes being buffered by the other parts of the system, sometimes causing catastrophic deviations from the system’s normal functioning.

Intuitively, when I envisage such a system, I think of it as being a poor fit for any simple heuristic like a linear model, at least for most questions. Because of the strong interdependence between parts of the system, and the overall intricacy of the structure as a whole, I imagine most perturbations to such a system are unlikely to result in linear effects on any appreciable scale. Again, as a matter of intuition, I would prescribe the use of (for example) more sophisticated statistical models, those with fewer constraints and more flexibility, in order to better agree with the inherent characteristics of the system.

If my intuition is correct (perhaps it’s not!), then it suggests that there could yet be a guidebook of heuristics, a way to tell in advance which heuristic approaches are likely to be most fruitful. In this way, we could build a set of heuristics of heuristics, i.e. meta-heuristics, which shaped not only the particulars of the simplifications we applied to models of complex inquiry, but the kinds of simplifications.

*Frightening only to some. I think we shouldn’t be frightened of their inconsistency with each other; as the quote goes, “Consistency is the hobgoblin of small minds.” Instead, I think it’s one of the universes most forgiving and helpful properties that multiple schemes of thinking about a problem can converge on the same correct answer. We should embrace and enjoy the chaotic, diverse world of heuristics, and set about determining which ones are the best and why.